TI LMV324QDR

January 15, 2018 | Author: Anonymous | Category: N/A
Share Embed


Short Description

Download TI LMV324QDR...

Description

                    SLOS263Q − AUGUST 1999 − REVISED OCTOBER 2004

D D D D D

D D

2.7-V and 5-V Performance −405C to 1255C Operation Low-Power Shutdown Mode (LMV324S) No Crossover Distortion Low Supply Current − LMV321 . . . 130 µA Typ − LMV358 . . . 210 µA Typ − LMV324 . . . 410 µA Typ − LMV324S . . . 410 µA Typ Rail-to-Rail Output Swing ESD Protection Exceeds JESD 22 − 2000-V Human-Body Model (A114-A) − 1000-V Charged-Device Model (C101)

description/ordering information The LMV321, LMV358, and LMV324/LMV324S are single, dual, and quad low-voltage (2.7 V to 5.5 V), operational amplifiers with rail-to-rail output swing. The LMV324S, which is a variation of the standard LMV324, includes a power-saving shutdown feature that reduces supply current to a maximum of 5 µA per channel when the amplifiers are not needed. Channels 1 and 2 together are put in shutdown, as are channels 3 and 4. While in shutdown, the outputs actively are pulled low. The LMV321, LMV358, LMV324, and LMV324S are the most cost-effective solutions for applications where low-voltage operation, space saving, and low cost are needed. These amplifiers were designed specifically for low-voltage (2.7 V to 5 V) operation, with performance specifications meeting or exceeding the LM358 and LM324 devices that operate from 5 V to 30 V. Additional features of the LMV3xx devices are a common-mode input voltage range that includes ground, 1-MHz unity-gain bandwidth, and 1-V/µs slew rate.

LMV324 . . . D (SOIC) OR PW (TSSOP) PACKAGE (TOP VIEW)

1OUT 1IN− 1IN+ VCC+ 2IN+ 2IN− 2OUT

1

14

2

13

3

12

4

11

5

10

6

9

7

8

4OUT 4IN− 4IN+ GND 3IN+ 3IN− 3OUT

LMV324S . . . D (SOIC) OR PW (TSSOP) PACKAGE (TOP VIEW)

1OUT 1IN− 1IN+ VCC 2IN+ 2IN− 2OUT 1/2 SHDN

1

16

2

15

3

14

4

13

5

12

6

11

7

10

8

9

4OUT 4IN− 4IN+ GND 3IN+ 3IN− 3OUT 3/4 SHDN

LMV358 . . . D (SOIC), DDU (VSSOP), DGK (MSOP), OR PW (TSSOP PACKAGE (TOP VIEW)

1OUT 1IN− 1IN+ GND

1

8

2

7

3

6

4

5

VCC+ 2OUT 2IN− 2IN+

LMV321 . . . DBV (SOT-23) OR DCK (SC-70) PACKAGE (TOP VIEW)

1IN+

1

GND

2

IN−

3

5

VCC+

4

OUT

The LMV321 is available in the ultra-small DCK (SC-70) package, which is approximately one-half the size of the DBV (SOT-23) package. This package saves space on printed circuit boards and enables the design of small portable electronic devices. It also allows the designer to place the device closer to the signal source to reduce noise pickup and increase signal integrity.

Copyright  2004, Texas Instruments Incorporated

  !"#$%! & '("")% $& ! *(+,'$%! -$%). "!-('%& '!!"# %! &*)''$%!& *)" %/) %)"#& ! )0$& &%"(#)%& &%$-$"- 1$""$%2. "!-('%! *"!')&&3 -!)& !% )')&&$",2 ',(-) %)&%3 ! $,, *$"$#)%)"&.

POST OFFICE BOX 655303

• DALLAS, TEXAS 75265

1

                    SLOS263Q − AUGUST 1999 − REVISED OCTOBER 2004

ORDERING INFORMATION ORDERABLE PART NUMBER

PACKAGE†

TA SC-70 (DCK) Single

SOT23-5 (DBV) MSOP/VSSOP (DGK)

Dual

SOIC (D)

−40°C −40 C to 85 85°C C TSSOP (PW) VSSOP (DDU)

SOIC (D) Quad TSSOP (PW)

Dual

SOIC (D) TSSOP (PW)

−40°C 125°C −40 C to 125 C

Reel of 3000

LMV321IDCKR

Reel of 250

LMV321IDCKT

Reel of 3000

LMV321IDBVR

Reel of 250

LMV321IDBVT

Reel of 2500

LMV358IDGKR

R5_

Reel of 250

LMV358IDGKT

PREVIEW

Tube of 75

LMV358ID

Reel of 2500

LMV358IDR

Tube of 150

LMV358IPW

Reel of 2000

LMV358IPWR

Reel of 3000

LMV358IDDUR

Tube of 50

LMV324ID

Reel of 2500

LMV324IDR

Tube of 40

LMV324SID

Reel of 2500

LMV324SIDR

Reel of 2000

MSOP/VSSOP (DGK)

VSSOP (DDU) SOIC (D) Quad TSSOP (PW)

TOP-SIDE MARKING‡ R3_ RC1_

MV358I MV358I RA56 LMV324I LMV324SI

LMV324IPWR

MV324I

LMV324SIPWR

MV324SI

Reel of 2500

LMV358QDGKR

Reel of 250

LMV358QDGKT

Tube of 75

LMV358QD

Reel of 2500

LMV358QDR

Tube of 150

LMV358QPW

Reel of 2000

LMV358QPWR

Reel of 3000

LMV358QDDUR

Tube of 50

LMV324QD

Reel of 2500

LMV324QDR

Tube of 90

LMV324QPW

Reel of 2000

LMV324QPWR

RH_ MV358Q MV358Q RAH_ LMV324Q MV324Q

† Package drawings, standard packing quantities, thermal data, symbolization, and PCB design guidelines are available at www.ti.com/sc/package. ‡ DBV/DCK/DGK: The actual top-side marking has one additional character that designates the assembly/test site.

symbol (each amplifier) −

IN−

OUT

2

+

IN+

POST OFFICE BOX 655303

• DALLAS, TEXAS 75265

                    SLOS263Q − AUGUST 1999 − REVISED OCTOBER 2004

LMV324 simplified schematic VCC

VBIAS1

+

VCC

− VBIAS2

+ Output

− VCC VCC VBIAS3

+ IN− IN+

− VBIAS4 + −

POST OFFICE BOX 655303

• DALLAS, TEXAS 75265

3

                    SLOS263Q − AUGUST 1999 − REVISED OCTOBER 2004

absolute maximum ratings over operating free-air temperature range (unless otherwise noted)† Supply voltage, VCC (see Note 1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5.5 V Differential input voltage, VID (see Note 2) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ±5.5 V Input voltage, VI (either input) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 0 to 5.5 V Duration of output short circuit (one amplifier) to ground at (or below) TA = 25°C, VCC ≤ 5.5 V (see Note 3) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Unlimited Package thermal impedance, qJA (see Notes 4 and 5): D (8-pin) package . . . . . . . . . . . . . . . . . . . . . . 97°C/W D (14-pin) package . . . . . . . . . . . . . . . . . . . . 86°C/W D (16-pin) package . . . . . . . . . . . . . . . . . . . . 73°C/W DBV (5-pin) package . . . . . . . . . . . . . . . . . . 206°C/W DCK (5-pin) package . . . . . . . . . . . . . . . . . . 252°C/W DDU (8-pin) package . . . . . . . . . . . . . . . . . TBD°C/W DGK (8-pin) package . . . . . . . . . . . . . . . . . . 172°C/W PW (8-pin) package . . . . . . . . . . . . . . . . . . . 149°C/W PW (14-pin) package . . . . . . . . . . . . . . . . . . 113°C/W PW (16-pin) package . . . . . . . . . . . . . . . . . . 108°C/W Operating virtual junction temperature, TJ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 150°C Storage temperature range, Tstg . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . −65°C to 150°C † Stresses beyond those listed under “absolute maximum ratings” may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under “recommended operating conditions” is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability. NOTES: 1. All voltage values (except differential voltages and VCC specified for the measurement of IOS) are with respect to the network GND. 2. Differential voltages are at IN+ with respect to IN−. 3. Short circuits from outputs to VCC can cause excessive heating and eventual destruction. 4. Maximum power dissipation is a function of TJ(max), qJA, and TA. The maximum allowable power dissipation at any allowable ambient temperature is PD = (TJ(max) − TA)/qJA. Selecting the maximum of 150°C can affect reliability. 5. The package thermal impedance is calculated in accordance with JESD 51-7.

recommended operating conditions (see Note 6) VCC

Supply voltage (single-supply operation)

VIH

Amplifier turnon voltage level (LMV324S)‡

VCC = 2.7 V VCC = 5 V

VIL

Amplifier turnoff voltage level (LMV324S)

VCC = 2.7 V VCC = 5 V

TA

Operating free-air temperature

MIN

MAX

2.7

5.5

UNIT V

1.7 V

3.5 0.7 1.5

I-Temp

−40

85

Q-Temp

−40

125

V °C

‡ VIH should not be allowed to exceed VCC. NOTE 6: All unused control inputs of the device must be held at VCC or GND to ensure proper device operation. Refer to the TI application report, Implications of Slow or Floating CMOS Inputs, literature number SCBA004.

4

POST OFFICE BOX 655303

• DALLAS, TEXAS 75265

                    SLOS263Q − AUGUST 1999 − REVISED OCTOBER 2004

electrical characteristics at TA = 25°C and VCC+ = 2.7 V (unless otherwise noted) PARAMETER VIO

Input offset voltage

aV

Average temperature coefficient of input offset voltage

IO

TEST CONDITIONS

MIN

TYP

MAX

1.7

7

UNIT mV mV/°C

5

IIB IIO

Input bias current

11

250

nA

Input offset current

5

50

nA

CMRR

Common-mode rejection ratio

kSVR

Supply-voltage rejection ratio

VCM = 0 to 1.7 V VCC = 2.7 V to 5 V,

VICR

Common-mode input voltage range

CMRR w 50 dB

Output swing

50

63

dB

VO = 1 V

50

60

dB

0 to 1.7

−0.2 to 1.9

V

High level

VCC − 100

VCC − 10 60

180

80

170

LMV358I (both amplifiers)

140

340

LMV324I/LMV324SI (all four amplifiers)

260

680

RL = 10 kΩ to 1.35 V

Low level

LMV321I ICC

Supply current

CL = 200 pF

mV

mA

B1 Fm

Unity-gain bandwidth

1

MHz

Phase margin

60

deg

Gm

Gain margin

10

dB

Vn In

Equivalent input noise voltage

f = 1 kHz

46

nV/√Hz

Equivalent input noise current

f = 1 kHz

0.17

pA/√Hz

shutdown characteristics (LMV324S) at TA = 25°C and VCC+ = 2.7 V (unless otherwise noted) PARAMETER ICC(SHDN) t(on) t(off)

TEST CONDITIONS

Supply current in shutdown mode (per channel)

SHDN ≤ 0.6 V

Amplifier turnon time

AV = 1, RL = Open (measured at 50% point) AV = 1, RL = Open (measured at 50% point)

Amplifier turnoff time

POST OFFICE BOX 655303

MIN

TYP

MAX 5

• DALLAS, TEXAS 75265

UNIT mA

2

ms

40

ns

5

                    SLOS263Q − AUGUST 1999 − REVISED OCTOBER 2004

electrical characteristics at specified free-air temperature range, VCC+ = 5 V (unless otherwise noted) PARAMETER VIO

Input offset voltage

aV

Average temperature coefficient of input offset voltage

IO

IIB

Input bias current

IIO

Input offset current

CMRR

Common-mode rejection ratio

kSVR

Supply-voltage rejection ratio

VICR

Common-mode input voltage range

TEST CONDITIONS

TA† 25°C

MIN

9

25°C

5

25°C

15 5

UNIT mV mV/°C

250 500

Full range

nA

50 150

nA

VCM = 0 to 4 V VCC= 2.7 V to 5 V, VO = 1 V, VCM = 1 V

25°C

50

65

dB

25°C

50

60

dB

CMMR w 50 dB

25°C

0 to 4

−0.2 to 4.2

V

25°C

VCC − 300 VCC − 400

VCC − 40

RL = 2 kΩ to 2.5 V

Full range 25°C

Low level Output swing High level

Large-signal differential voltage gain

RL = 2 kΩ

IOS

Output short-circuit current

Sourcing, VO = 0 V Sinking, VO = 5 V

Full range

VCC − 100 VCC − 200

Full range

10

CL = 200 pF

100 V/mV

5

60

10

160 130

Full range

LMV358I (both amplifiers)

mA 250 350

210

Full range 25°C

180 280

15

25°C

LMV324I/LMV324SI (all four amplifiers)

65

25°C

25°C LMV321I

mV

VCC − 10

Full range

25°C

300 400

25°C Low level

AVD

120

Full range 25°C

RL = 10 kΩ to 2.5 V

440 615

410

Full range

A mA

830 1160

B1 fm

Unity-gain bandwidth

25°C

1

MHz

Phase margin

25°C

60

deg

Gm

Gain margin

25°C

10

dB

Vn In

Equivalent input noise voltage

f = 1 kHz

25°C

39

nV/√Hz

Equivalent input noise current

f = 1 kHz

25°C

0.21

pA/√Hz

25°C

1

SR Slew rate † Full range: −40°C to 85°C for I-temp, −40°C to 125°C for Q-temp.

6

7

Full range

High level

Supply current

MAX

1.7

Full range

25°C

ICC

TYP

POST OFFICE BOX 655303

• DALLAS, TEXAS 75265

V/ms

                    SLOS263Q − AUGUST 1999 − REVISED OCTOBER 2004

shutdown characteristics (LMV324S) at TA = 25°C and VCC+ = 5 V (unless otherwise noted) PARAMETER ICC(SHDN) t(on) t(off)

TEST CONDITIONS

TA

Supply current in shutdown mode (per channel)

SHDN ≤ 0.6 V

Amplifier turnon time

AV = 1, RL = Open (measured at 50% point) AV = 1, RL = Open (measured at 50% point)

Amplifier turnoff time

POST OFFICE BOX 655303

MIN

TYP

−40°C to 85°C

• DALLAS, TEXAS 75265

MAX 5

UNIT mA

2

ms

40

ns

7

                    SLOS263Q − AUGUST 1999 − REVISED OCTOBER 2004

TYPICAL CHARACTERISTICS LMV321 FREQUENCY RESPONSE vs RESISTIVE LOAD

LMV321 FREQUENCY RESPONSE vs RESISTIVE LOAD

Vs = 2.7 V RL = 100 kΩ, 2 kΩ, 600 Ω

70

Phase

60

Gain − dB

40

70

90

60

75 60

2 kΩ 100 kΩ

30

105

45

Gain

20

30 600 Ω

10

100 kΩ

−10 1k

10 k

100 k Frequency − Hz

600 Ω

Phase

50

75 2 kΩ

60

40

100 kΩ

30

45

Gain

20 10

15

15 2 kΩ

1M

0

0

−15 10 M

−10 1k

10 k

LMV321 FREQUENCY RESPONSE vs CAPACITIVE LOAD

LMV321 FREQUENCY RESPONSE vs CAPACITIVE LOAD 70

100

60

100 Phase

0 pF

50

80

60

60

50

80 0 pF

60

100 pF

Vs = 5.0 V RL = 600 Ω CL = 0 pF 100 pF 500 pF 1000 pF

−30 10 k

−20 100 pF

−40 500 pF

0 pF

−60

1000 pF

−80

100 k 1M Frequency − Hz

−100 10 M

Gain − dB

Gain − dB

Gain

40

40 30

0

10

−20

Vs = 5.0 V 0 pF RL = 100 kΩ 100 pF −10 CL = 0 pF 100 pF 500 pF 500 pF −20 1000 pF 1000 pF −30 10 k 100 k 1M Frequency − Hz 0

Figure 4

POST OFFICE BOX 655303

20

20

Figure 3

8

500 pF

Gain

• DALLAS, TEXAS 75265

−40

Phase Margin − Deg

0

20

−20

20

Phase Margin − Deg

500 pF 1000 pF

100 pF

1000 pF

40

40

−10

−15 10 M

100 k 1M Frequency − Hz

Phase

0

0

600 Ω

Figure 2

70

10

30

100 kΩ

Figure 1

30

105 90

2 kΩ

0

120

Vs = 5.0 V RL = 100 kΩ, 2 kΩ, 600 Ω

Phase Margin − Deg

600 Ω

80

Phase Margin − Deg

50

120

Gain − dB

80

−60 −80 −100 10 M

                    SLOS263Q − AUGUST 1999 − REVISED OCTOBER 2004

TYPICAL CHARACTERISTICS STABILITY vs CAPACITIVE LOAD

LMV321 FREQUENCY RESPONSE vs TEMPERATURE 120

80 Vs = 5.0 V RL = 2 kΩ

60

75

Gain − dB

25°C

60

40 −40°C

45

Gain

20

30

85°C

25°C

0 −10 1k

10 k

100 VCC = ±2.5 V AV = +1 RL = 2 kΩ VO = 100 mVPP 10 −2

−15 10 M

100 k 1M Frequency − Hz

0

STABILITY vs CAPACITIVE LOAD

STABILITY vs CAPACITIVE LOAD

2.5 V _

1000

VO

+

RL 2.5 V

CL

Capacitive Load − nF

Capacitive Load − pF

−0.5

Figure 6

10000

LMV324S (25% Overshoot)

100 LMV3xx (25% Overshoot)

−1.5

−1

−1 −0.5 0 Output Voltage − V

VCC = ±2.5 V RL = 2 kΩ AV = 10 VO = 100 mVPP

1

1.5

1

LMV324S (25% Overshoot)

1000

LMV3xx (25% Overshoot) 100

134 kΩ

1.21 MΩ +2.5 V

VCC = ±2.5 V AV = +1 RL = 1 MΩ VO = 100 mVPP 0.5

0.5

Output Voltage − V

10000

10 −2.0

−1.5

Figure 5

VI

CL

LMV3xx (25% Overshoot)

0

−40°C

VO RL

−2.5 V

1000

15

10

+

VI

Phase Margin − Deg

Phase

30

_

90

85°C

50

2.5 V

LMV324S (25% Overshoot)

105

Capacitive Load − pF

70

10000

_ VI

+

RL

VO CL

−2.5 V

1.5

10 −2.0

−1.5

−1 −0.5 0 Output Voltage − V

0.5

1

1.5

Figure 8

Figure 7

POST OFFICE BOX 655303

• DALLAS, TEXAS 75265

9

                    SLOS263Q − AUGUST 1999 − REVISED OCTOBER 2004

TYPICAL CHARACTERISTICS SLEW RATE vs SUPPLY VOLTAGE

STABILITY vs CAPACITIVE LOAD 10000

1.500 1.400

LMV3xx (25% Overshoot)

1000 LMV324S (25% Overshoot)

100

134 kΩ

1.21 MΩ

_

−1.5

NSLEW 1.100 LMV3xx

1.000

PSLEW

0.900

+

VO CL

RL

NSLEW

0.700

LMV324S

0.600

−2.5 V

10 −2.0

Gain

1.200

0.800

+2.5 V VI

RL = 100 kΩ

1.300 Slew Rate − V/µs

Capacitive Load − nF

VCC = ±2.5 V RL = 1 MΩ AV = 10 VO = 100 mVPP

PSLEW

−1

−0.5

0

0.5

1

0.500 2.5

1.5

3.0

3.5

4.5

5.0

V CC − Supply Voltage − V

Output Voltage − V

Figure 9

Figure 10

SUPPLY CURRENT vs SUPPLY VOLTAGE − QUAD AMPLIFIER

INPUT CURRENT vs TEMPERATURE

700

−10 VCC = 5 V VI = VCC/2

LMV3xx 600

LMV324S −20

TA = 85°C 500 Input Current − nA

Supply Current − µA

4.0

TA = 25°C

400 300

TA = −40°C

200

−30 LMV3xx −40

−50 100

LMV324S

0 0

1

2

3

4

5

6

−60 −40 −30 −20 −10 0 10 20 30 40 50 60 70 80 TA − °C

VCC − Supply Voltage − V

Figure 11

10

Figure 12

POST OFFICE BOX 655303

• DALLAS, TEXAS 75265

                    SLOS263Q − AUGUST 1999 − REVISED OCTOBER 2004

TYPICAL CHARACTERISTICS SOURCE CURRENT vs OUTPUT VOLTAGE

SOURCE CURRENT vs OUTPUT VOLTAGE

100

100 VCC = 2.7 V

VCC = 5 V 10 Sourcing Current − mA

Sourcing Current − mA

10 LMV3xx 1 LMV324S

0.1

LMV3xx

1 LMV324S 0.1

0.01

0.01

0.001 0.001

0.01

0.1

1

10

0.001 0.001

Output Voltage Referenced to VCC+ − V

0.01

0.1

Figure 13

SINKING CURRENT vs OUTPUT VOLTAGE

100

100 VCC = 2.7 V

VCC = 5 V

10

10 LMV324S

Sinking Current − mA

Sinking Current − mA

10

Figure 14

SINKING CURRENT vs OUTPUT VOLTAGE

1 LMV3xx 0.1

0.01

0.001 0.001

1

Output Voltage Referenced to VCC+ − V

LMV324S 1

LMV324

0.1

0.01

0.01

0.1

1

10

Output Voltage Referenced to GND − V

0.001 0.001

0.01

0.1

1

10

Output Voltage Referenced to GND − V

Figure 16

Figure 15

POST OFFICE BOX 655303

• DALLAS, TEXAS 75265

11

                    SLOS263Q − AUGUST 1999 − REVISED OCTOBER 2004

TYPICAL CHARACTERISTICS SHORT-CIRCUIT CURRENT vs TEMPERATURE

SHORT-CIRCUIT CURRENT vs TEMPERATURE 120

300

LMV324S VCC = 5 V

270

Sinking Current − mA

LMV324S VCC = 5 V

210

LMV3xx VCC = 5 V

180 150 120

LMV3xx VCC = 2.7 V

90 60

LMV324S VCC = 2.7 V

Sourcing Current − mA

100

240

80 LMV3xx VCC = 5 V 60

LMV3xx VCC = 2.7 V

40

LMV324S VCC = 2.7 V

20

30 0 −40 −30 −20 −10 0

0 10 20 30 40 50 60 70 80 90 TA − °C

10 20 30 40 50 60 70 80 90 TA − °C

Figure 17

Figure 18

−kSVR vs FREQUENCY

+kSVR vs FREQUENCY 90

80 LMV324S

VCC = −5 V RL = 10 kΩ

70

LMV324S VCC = 5 V RL = 10 kΩ

80 70

60 LMV3xx

LMV3xx

60

50

+k SVR − dB

−k SVR − dB

−40 −30 −20−10 0

40 30

50 40 30

20

20

10

10 0

0 .1

1

10

100

1,000

.1

10 Frequency − Hz

Frequency − kHz

Figure 19

12

1

Figure 20

POST OFFICE BOX 655303

• DALLAS, TEXAS 75265

100

1,000

                    SLOS263Q − AUGUST 1999 − REVISED OCTOBER 2004

TYPICAL CHARACTERISTICS −kSVR vs FREQUENCY

+kSVR vs FREQUENCY 80

80 VCC = −2.7 V RL = 10 kΩ

LMV324S

70

70

LMV3xx +k SVR − dB

50 40 30

LMV3xx

50 40 30

20

20

10

10 0

0 .1

1

10

100

.1

1,000

1

10 Frequency − kHz

Figure 21

Figure 22

6

RL = 10 kΩ THD > 5% AV = 3

RL = 10 kΩ 60 Peak Output Voltage − V OPP

5 LMV3xx LMV324S

Negative Swing

1,000

OUTPUT VOLTAGE vs FREQUENCY

70

50

100

Frequency − kHz

OUTPUT VOLTAGE SWING FROM RAILS vs SUPPLY VOLTAGE Output Voltage Swing vs Supply Voltage − mV

VCC = 2.7 V RL = 10 kΩ

60

60 −k SVR − dB

LMV324S

40 30 20 Positive Swing

LMV3xx VCC = 5 V 4 LMV324S VCC = 5 V 3 LMV3xx VCC = 2.7 V 2 LMV324S VCC = 2.7 V 1

10

0

0 2.5

3.0

3.5

4.0

4.5

5.0

1

10

100

1000

10000

Frequency − kHz

VCC − Supply Voltage − V

Figure 24

Figure 23

POST OFFICE BOX 655303

• DALLAS, TEXAS 75265

13

                    SLOS263Q − AUGUST 1999 − REVISED OCTOBER 2004

TYPICAL CHARACTERISTICS OPEN-LOOP OUTPUT IMPEDANCE vs FREQUENCY

CROSSTALK REJECTION vs FREQUENCY 150

110 LMV3xx VCC = 5 V

Impedance − Ω

90 80 70

LMV324S VCC = 2.7 V

60 50

LMV324S VCC = 5 V

40

VCC = 5 V RL = 5 kΩ AV = 1 VO = 3 VPP

140 Crosstalk Rejection − dB

100

LMV3xx VCC = 2.7 V

130

120

110

100 30 20 1

1000

2000

3000

4000

90 .1

Frequency − kHz

10

Frequency − kHz

Figure 25

14

1

Figure 26

POST OFFICE BOX 655303

• DALLAS, TEXAS 75265

100

                    SLOS263Q − AUGUST 1999 − REVISED OCTOBER 2004

TYPICAL CHARACTERISTICS NONINVERTING LARGE-SIGNAL PULSE RESPONSE

NONINVERTING LARGE-SIGNAL PULSE RESPONSE

Input

LMV3xx

LMV3xx 1 V/Div

1 V/Div

Input

LMV324S

VCC = ±2.5 V RL = 2 kΩ T = 25°C

LMV324S

VCC = ±2.5 V RL = 2 kΩ TA = 85°C 1 µs/Div

1 µs/Div

Figure 27

Figure 28

NONINVERTING LARGE-SIGNAL PULSE RESPONSE

Input

1 V/Div

LMV3xx

LMV324S

VCC = ±2.5 V RL = 2 kΩ TA = −40°C 1 µs/Div

Figure 29

POST OFFICE BOX 655303

• DALLAS, TEXAS 75265

15

                    SLOS263Q − AUGUST 1999 − REVISED OCTOBER 2004

TYPICAL CHARACTERISTICS NONINVERTING SMALL-SIGNAL PULSE RESPONSE

NONINVERTING SMALL-SIGNAL PULSE RESPONSE

Input

Input

LMV3xx

50 mV/Div

50 mV/Div

LMV3xx

LMV324S

LMV324S

VCC = ±2.5 V RL = 2 kΩ TA = 25°C

VCC = ±2.5 V RL = 2 kΩ TA = 85°C 1 µs/Div

1 µs/Div

Figure 30

Figure 31

NONINVERTING SMALL-SIGNAL PULSE RESPONSE

50 mV/Div

Input

LMV3xx

LMV324S

VCC = ±2.5 V RL = 2 kΩ TA = −40°C 1 µs/Div

Figure 32

16

POST OFFICE BOX 655303

• DALLAS, TEXAS 75265

                    SLOS263Q − AUGUST 1999 − REVISED OCTOBER 2004

TYPICAL CHARACTERISTICS INVERTING LARGE-SIGNAL PULSE RESPONSE

INVERTING LARGE-SIGNAL PULSE RESPONSE

Input

Input

LMV3xx

1 V/Div

1 V/Div

LMV3xx

LMV324S

LMV324S

VCC = ±2.5 V RL = 2 kΩ TA = 25°C

VCC = ±2.5 V RL = 2 kΩ TA = 85°C 1 µs/Div

1 µs/Div

Figure 33

Figure 34

INVERTING LARGE-SIGNAL PULSE RESPONSE

Input

1 V/Div

LMV3xx

LMV324S

VCC = ±2.5 V RL = 2 kΩ TA = −40°C 1 µs/Div

Figure 35

POST OFFICE BOX 655303

• DALLAS, TEXAS 75265

17

                    SLOS263Q − AUGUST 1999 − REVISED OCTOBER 2004

TYPICAL CHARACTERISTICS INVERTING SMALL-SIGNAL PULSE RESPONSE

INVERTING SMALL-SIGNAL PULSE RESPONSE

Input

Input

LMV3xx 50 mV/Div

50 mV/Div

LMV3xx

LMV324S

LMV324S

VCC = ±2.5 V RL = 2 kΩ TA = 25°C

VCC = ±2.5 V RL = 2 kΩ TA = 85°C 1 µs/Div

1 µs/Div

Figure 36

Figure 37

INVERTING SMALL-SIGNAL PULSE RESPONSE

50 mV/Div

Input

LMV3xx

LMV324S

VCC = ±2.5 V RL = 2 kΩ TA = −40°C 1 µs/Div

Figure 38

18

POST OFFICE BOX 655303

• DALLAS, TEXAS 75265

                    SLOS263Q − AUGUST 1999 − REVISED OCTOBER 2004

TYPICAL CHARACTERISTICS INPUT CURRENT NOISE vs FREQUENCY

INPUT CURRENT NOISE vs FREQUENCY

0.80

0.50

0.60

0.40

0.20

VCC = 5 V

0.45 Input Current Noise − pA/ Hz

Input Current Noise − pA/ Hz

VCC = 2.7 V

0.40 0.35 0.30 0.25 0.20 0.15 0.10 0.05

0.00

0.00 10 Hz

100 Hz

1 KHz

10 KHz

10 Hz

100 Hz

1 kHz

10 kHz

Frequency

Frequency

Figure 39

Figure 40

INPUT VOLTAGE NOISE vs FREQUENCY 200

Input Voltage Noise − nV/ Hz

180 160 140 120 100 80 VCC = 2.7 V

60 40 VCC = 5 V 20 10 Hz

100 Hz

1 kHz

10 kHz

Frequency

Figure 41

POST OFFICE BOX 655303

• DALLAS, TEXAS 75265

19

                    SLOS263Q − AUGUST 1999 − REVISED OCTOBER 2004

TYPICAL CHARACTERISTICS THD + N vs FREQUENCY

THD + N vs FREQUENCY 10.000

1.000

10.000

VCC = 2.7 V RL = 10 kΩ AV = 1 VO = 1 VPP

VCC = 2.7 V RL = 10 kΩ AV = 10 VO = 1 VPP

1.000

THD − %

THD − %

LMV324S

LMV3xx

0.100

0.100 LMV3xx

0.010

0.010 LMV324S

0.001

0.001 10

100

1000

10000

10

100000

1.000

10000

Frequency − Hz

Frequency − Hz

Figure 42

Figure 43

THD + N vs FREQUENCY 10.000

1000

100

100000

THD + N vs FREQUENCY 10.000

VCC = 5 V RL = 10 kΩ AV = 1 VO = 1 VPP

VCC = 5 V RL = 10 kΩ AV = 10 VO = 2.5 VPP

1.000

0.100

THD − %

THD − %

LMV324S

LMV324S

0.100

0.010

0.010

LMV3xx

LMV3xx 0.001

0.001 10

20

100

1000

10000

100000

10

100

1000

Frequency − Hz

Frequency − Hz

Figure 44

Figure 45

POST OFFICE BOX 655303

• DALLAS, TEXAS 75265

10000

100000

PACKAGE OPTION ADDENDUM www.ti.com

4-Mar-2005

PACKAGING INFORMATION Orderable Device

Status (1)

Package Type

Package Drawing

Pins Package Eco Plan (2) Qty

LMV321IDBVR

ACTIVE

SOT-23

DBV

5

3000 Green (RoHS & no Sb/Br)

CU NIPDAU

Level-1-260C-UNLIM

LMV321IDBVT

ACTIVE

SOT-23

DBV

5

250

Green (RoHS & no Sb/Br)

CU NIPDAU

Level-1-260C-UNLIM

LMV321IDCKR

ACTIVE

SC70

DCK

5

3000 Green (RoHS & no Sb/Br)

CU NIPDAU

Level-1-260C-UNLIM

LMV321IDCKT

ACTIVE

SC70

DCK

5

250

Pb-Free (RoHS)

CU NIPDAU

Level-1-260C-UNLIM

LMV324ID

ACTIVE

SOIC

D

14

50

Pb-Free (RoHS)

CU NIPDAU

Level-2-260C-1 YEAR/ Level-1-235C-UNLIM

LMV324IDR

ACTIVE

SOIC

D

14

2500

Pb-Free (RoHS)

CU NIPDAU

Level-2-260C-1 YEAR/ Level-1-235C-UNLIM

LMV324IPWR

ACTIVE

TSSOP

PW

14

2000

Pb-Free (RoHS)

CU NIPDAU

Level-1-250C-UNLIM

LMV324QD

ACTIVE

SOIC

D

14

50

Pb-Free (RoHS)

CU NIPDAU

Level-2-260C-1 YEAR/ Level-1-235C-UNLIM

LMV324QDR

ACTIVE

SOIC

D

14

2500

Pb-Free (RoHS)

CU NIPDAU

Level-2-260C-1 YEAR/ Level-1-235C-UNLIM

LMV324QPW

ACTIVE

TSSOP

PW

14

90

Pb-Free (RoHS)

CU NIPDAU

Level-1-250C-UNLIM

LMV324QPWR

ACTIVE

TSSOP

PW

14

2000

Pb-Free (RoHS)

CU NIPDAU

Level-1-250C-UNLIM

LMV324SID

ACTIVE

SOIC

D

16

40

Pb-Free (RoHS)

CU NIPDAU

Level-2-260C-1 YEAR/ Level-1-235C-UNLIM

LMV324SIDR

ACTIVE

SOIC

D

16

2500

Pb-Free (RoHS)

CU NIPDAU

Level-2-260C-1 YEAR/ Level-1-235C-UNLIM

LMV324SIPWR

ACTIVE

TSSOP

PW

16

2000

Pb-Free (RoHS)

CU NIPDAU

Level-1-250C-UNLIM

LMV358ID

ACTIVE

SOIC

D

8

75

Pb-Free (RoHS)

CU NIPDAU

Level-2-260C-1 YEAR/ Level-1-235C-UNLIM

LMV358IDDUR

ACTIVE

VSSOP

DDU

8

3000

Pb-Free (RoHS)

CU NIPDAU

Level-1-260C-UNLIM

LMV358IDGKR

ACTIVE

MSOP

DGK

8

2500 Green (RoHS & no Sb/Br)

CU NIPDAU

Level-2-260C-1YEAR

LMV358IDR

ACTIVE

SOIC

D

8

2500 Green (RoHS & no Sb/Br)

CU NIPDAU

Level-1-260C-UNLIM

LMV358IPW

ACTIVE

TSSOP

PW

8

150

Pb-Free (RoHS)

CU NIPDAU

Level-1-250C-UNLIM

LMV358IPWR

ACTIVE

TSSOP

PW

8

2000

Pb-Free (RoHS)

CU NIPDAU

Level-1-250C-UNLIM

LMV358QD

ACTIVE

SOIC

D

8

75

Pb-Free (RoHS)

CU NIPDAU

Level-2-260C-1 YEAR/ Level-1-235C-UNLIM

LMV358QDDUR

ACTIVE

VSSOP

DDU

8

3000

Pb-Free (RoHS)

CU NIPDAU

Level-1-260C-UNLIM

LMV358QDGKR

ACTIVE

MSOP

DGK

8

2500 Green (RoHS & no Sb/Br)

CU NIPDAU

Level-2-260C-1YEAR

LMV358QDR

ACTIVE

SOIC

D

8

2500

Pb-Free (RoHS)

CU NIPDAU

Level-2-260C-1 YEAR/ Level-1-235C-UNLIM

LMV358QPW

ACTIVE

TSSOP

PW

8

150

Pb-Free (RoHS)

CU NIPDAU

Level-1-250C-UNLIM

Addendum-Page 1

Lead/Ball Finish

MSL Peak Temp (3)

PACKAGE OPTION ADDENDUM www.ti.com

4-Mar-2005

Orderable Device

Status (1)

Package Type

Package Drawing

LMV358QPWR

ACTIVE

TSSOP

PW

Pins Package Eco Plan (2) Qty 8

2000

Pb-Free (RoHS)

Lead/Ball Finish CU NIPDAU

MSL Peak Temp (3) Level-1-250C-UNLIM

(1)

The marketing status values are defined as follows: ACTIVE: Product device recommended for new designs. LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect. NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design. PREVIEW: Device has been announced but is not in production. Samples may or may not be available. OBSOLETE: TI has discontinued the production of the device. (2)

Eco Plan - May not be currently available - please check http://www.ti.com/productcontent for the latest availability information and additional product content details. None: Not yet available Lead (Pb-Free). Pb-Free (RoHS): TI's terms "Lead-Free" or "Pb-Free" mean semiconductor products that are compatible with the current RoHS requirements for all 6 substances, including the requirement that lead not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, TI Pb-Free products are suitable for use in specified lead-free processes. Green (RoHS & no Sb/Br): TI defines "Green" to mean "Pb-Free" and in addition, uses package materials that do not contain halogens, including bromine (Br) or antimony (Sb) above 0.1% of total product weight. (3)

MSL, Peak Temp. -- The Moisture Sensitivity Level rating according to the JEDECindustry standard classifications, and peak solder temperature. Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release. In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.

Addendum-Page 2

MECHANICAL DATA MPDS025C – FEBRUARY 1997 – REVISED FEBRUARY 2002

DCK (R-PDSO-G5)

PLASTIC SMALL-OUTLINE PACKAGE

0,30 0,15

0,65 5

0,10 M

4

1,40 1,10

1

0,13 NOM

2,40 1,80

3

Gage Plane

2,15 1,85 0,15 0°–8°

0,46 0,26

Seating Plane 1,10 0,80

0,10 0,00

0,10

4093553-2/D 01/02 NOTES: A. B. C. D.

All linear dimensions are in millimeters. This drawing is subject to change without notice. Body dimensions do not include mold flash or protrusion. Falls within JEDEC MO-203

POST OFFICE BOX 655303

• DALLAS, TEXAS 75265

MECHANICAL DATA MTSS001C – JANUARY 1995 – REVISED FEBRUARY 1999

PW (R-PDSO-G**)

PLASTIC SMALL-OUTLINE PACKAGE

14 PINS SHOWN

0,30 0,19

0,65 14

0,10 M

8

0,15 NOM 4,50 4,30

6,60 6,20 Gage Plane 0,25

1

7 0°– 8° A

0,75 0,50

Seating Plane 0,15 0,05

1,20 MAX

PINS **

0,10

8

14

16

20

24

28

A MAX

3,10

5,10

5,10

6,60

7,90

9,80

A MIN

2,90

4,90

4,90

6,40

7,70

9,60

DIM

4040064/F 01/97 NOTES: A. B. C. D.

All linear dimensions are in millimeters. This drawing is subject to change without notice. Body dimensions do not include mold flash or protrusion not to exceed 0,15. Falls within JEDEC MO-153

POST OFFICE BOX 655303

• DALLAS, TEXAS 75265

IMPORTANT NOTICE Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, modifications, enhancements, improvements, and other changes to its products and services at any time and to discontinue any product or service without notice. Customers should obtain the latest relevant information before placing orders and should verify that such information is current and complete. All products are sold subject to TI’s terms and conditions of sale supplied at the time of order acknowledgment. TI warrants performance of its hardware products to the specifications applicable at the time of sale in accordance with TI’s standard warranty. Testing and other quality control techniques are used to the extent TI deems necessary to support this warranty. Except where mandated by government requirements, testing of all parameters of each product is not necessarily performed. TI assumes no liability for applications assistance or customer product design. Customers are responsible for their products and applications using TI components. To minimize the risks associated with customer products and applications, customers should provide adequate design and operating safeguards. TI does not warrant or represent that any license, either express or implied, is granted under any TI patent right, copyright, mask work right, or other TI intellectual property right relating to any combination, machine, or process in which TI products or services are used. Information published by TI regarding third-party products or services does not constitute a license from TI to use such products or services or a warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI. Reproduction of information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. Reproduction of this information with alteration is an unfair and deceptive business practice. TI is not responsible or liable for such altered documentation. Resale of TI products or services with statements different from or beyond the parameters stated by TI for that product or service voids all express and any implied warranties for the associated TI product or service and is an unfair and deceptive business practice. TI is not responsible or liable for any such statements. Following are URLs where you can obtain information on other Texas Instruments products and application solutions: Products

Applications

Amplifiers

amplifier.ti.com

Audio

www.ti.com/audio

Data Converters

dataconverter.ti.com

Automotive

www.ti.com/automotive

DSP

dsp.ti.com

Broadband

www.ti.com/broadband

Interface

interface.ti.com

Digital Control

www.ti.com/digitalcontrol

Logic

logic.ti.com

Military

www.ti.com/military

Power Mgmt

power.ti.com

Optical Networking

www.ti.com/opticalnetwork

Microcontrollers

microcontroller.ti.com

Security

www.ti.com/security

Telephony

www.ti.com/telephony

Video & Imaging

www.ti.com/video

Wireless

www.ti.com/wireless

Mailing Address:

Texas Instruments Post Office Box 655303 Dallas, Texas 75265 Copyright  2005, Texas Instruments Incorporated

View more...

Comments

Copyright © 2017 HUGEPDF Inc.